1,202 research outputs found

    institutional innovation from the bottom up?

    Get PDF
    A sustainable economy fulfills societal needs in a fundamentally different way to the current economic system. Improvements to the efficiency of existing technologies or practices appear insufficient for achieving sustainable development within the planetary boundaries. Disruptive, systemic and transformational changes appear necessary in order to replace existing technologies and practices to establish a sustainable economy. Such innovations often start out in niches; however, the scaling up and the ultimate replacement of current socio-technical systems requires governance to allow for the coordination of actors, the reorganization of socio-technical systems and the mobilization and allocation of resources. As governmental institutions are part of the current (non-sustainable) systems and thereby fail to provide coherent, integrated and transformative governance, we explore whether institutional innovation from non-state actors can step in to provide governance of transformation processes. Based on explorative qualitative case studies of networks in the food sector, city planning and reporting tools, we analyze the potential of bottom-up institutional innovations to coordinate actors in transformation processes

    Heparan Sulfate Induces Necroptosis in Murine Cardiomyocytes: A Medical-In silico Approach Combining In vitro Experiments and Machine Learning.

    Get PDF
    Life-threatening cardiomyopathy is a severe, but common, complication associated with severe trauma or sepsis. Several signaling pathways involved in apoptosis and necroptosis are linked to trauma- or sepsis-associated cardiomyopathy. However, the underling causative factors are still debatable. Heparan sulfate (HS) fragments belong to the class of danger/damage-associated molecular patterns liberated from endothelial-bound proteoglycans by heparanase during tissue injury associated with trauma or sepsis. We hypothesized that HS induces apoptosis or necroptosis in murine cardiomyocytes. By using a novel Medical-In silico approach that combines conventional cell culture experiments with machine learning algorithms, we aimed to reduce a significant part of the expensive and time-consuming cell culture experiments and data generation by using computational intelligence (refinement and replacement). Cardiomyocytes exposed to HS showed an activation of the intrinsic apoptosis signal pathway via cytochrome C and the activation of caspase 3 (both p < 0.001). Notably, the exposure of HS resulted in the induction of necroptosis by tumor necrosis factor α and receptor interaction protein 3 (p < 0.05; p < 0.01) and, hence, an increased level of necrotic cardiomyocytes. In conclusion, using this novel Medical-In silico approach, our data suggest (i) that HS induces necroptosis in cardiomyocytes by phosphorylation (activation) of receptor-interacting protein 3, (ii) that HS is a therapeutic target in trauma- or sepsis-associated cardiomyopathy, and (iii) indicate that this proof-of-concept is a first step toward simulating the extent of activated components in the pro-apoptotic pathway induced by HS with only a small data set gained from the in vitro experiments by using machine learning algorithms.This work was supported by an intramural grant to LM (START 46/16) and EZ (START 113/17). LM has received a grant by the Deutsche Forschungsgemeinschaft (DFG, MA 7082/1–1). We thank Dr Claycomb and his coworkers for providing the HL-1 cells and a detailed documentation. The Immunohistochemistry and Confocal Microscopy Unit, a core facility of the Interdisciplinary Center for Clinical Research (IZKF) Aachen, within the Faculty of Medicine at the RWTH Aachen University, supported this work

    Proenkephalin A and bioactive adrenomedullin are useful for risk prognostication in cardiac surgery

    Get PDF
    IntroductionVarious clinical scores have been developed to predict organ dysfunction and mortality in patients undergoing cardiac surgery, but outcome prediction may be inaccurate for some patient groups. Proenkephalin A (penKid) and bioactive adrenomedullin (bio-ADM) have emerged as promising biomarkers correlating with shock and organ dysfunction. This imposes the question of whether they can be used as prognostic biomarkers for risk stratification in the perioperative setting of cardiac surgery.MethodsPatients undergoing cardiac surgery were prospectively enrolled in this observational study. PenKid and bio-ADM plasma levels, as well as markers evaluating inflammation and organ dysfunction, were measured at five perioperative time points from before the induction of anesthesia to up to 48 h postoperatively. Clinical data regarding organ dysfunction and patient outcomes were recorded during the intensive care unit (ICU)-stay with a special focus on acute kidney injury (AKI).ResultsIn 136 patients undergoing cardiac surgery, the bio-ADM levels increased and the penKid levels decreased significantly over time. PenKid was associated with chronic kidney disease (CKD), the incidence of AKI, and renal replacement therapy (RRT). Bio-ADM was associated with lactate and the need for vasopressors. PenKid was useful to predict an ICU-length of stay (LOS)&gt;1 day and added prognostic value to the European System for Cardiac Operative Risk Evaluation Score (EuroSCORE) II when measured after the end of cardiopulmonary bypass and 24 h after cardiac surgery. For bio-ADM, the same was true when measured 24 h after surgery. PenKid also added prognostic value to the EuroSCORE II for the combined outcome “ICU length of stay &gt;1 day and in-hospital mortality.”ConclusionThe combination of preoperative EuroSCORE II and intraoperative measurement of penKid may be more useful to predict a prolonged ICU LOS and increased mortality than EuroSCORE II alone. Bio-ADM correlates with markers of shock. More research is encouraged for early risk stratification and validation of penKid and bio-ADM as a tool involved in clinical decisions, which may enable the early initiation of organ protective strategies

    Molecular MRI in the Earth's Magnetic Field Using Continuous Hyperpolarization of a Biomolecule in Water

    Get PDF
    In this work, we illustrate a method to continuously hyperpolarize a biomolecule, nicotinamide, in water using parahydrogen and signal amplification by reversible exchange (SABRE). Building on the preparation procedure described recently by Truong et al. [ J. Phys. Chem. B, 2014, 118, 13882-13889 ], aqueous solutions of nicotinamide and an Ir-IMes catalyst were prepared for low-field NMR and MRI. The 1H-polarization was continuously renewed and monitored by NMR experiments at 5.9 mT for more than 1000 s. The polarization achieved corresponds to that induced by a 46 T magnet (P = 1.6 Ă— 10-4) or an enhancement of 104. The polarization persisted, although reduced, if cell culture medium (DPBS with Ca2+ and Mg2+) or human cells (HL-60) were added, but was no longer observable after the addition of human blood. Using a portable MRI unit, fast 1H-MRI was enabled by cycling the magnetic field between 5 mT and the Earth's field for hyperpolarization and imaging, respectively. A model describing the underlying spin physics was developed that revealed a polarization pattern depending on both contact time and magnetic field. Furthermore, the model predicts an opposite phase of the dihydrogen and substrate signal after one exchange, which is likely to result in the cancelation of some signal at low field

    Efficacy and safety of Vilobelimab (IFX-1), a novel monoclonal anti-C5a antibody, in patients with early severe sepsis or septic shock — a randomized, placebo-controlled, double-blind, multicenter, phase IIa Trial (SCIENS Study)

    Get PDF
    IMPORTANCE:. Anaphylatoxin C5a, a proinflammatory complement split product, plays a central role in mediating organ dysfunction. OBJECTIVES:. This phase II clinical trial was conducted to study safety, tolerability, pharmacokinetics, and pharmacodynamics of vilobelimab, a recombinant monoclonal antibody against C5a, in patients with severe sepsis or septic shock. DESIGN:. Multicenter, randomized, and placebo-controlled study. SETTING AND PARTICIPANTS:. Eleven multidisciplinary ICUs across Germany. Adult patients with severe sepsis or septic shock and with early onset of infection-associated organ dysfunction. MAIN OUTCOMES AND MEASURES:. Patients were randomly assigned in a ratio of 2:1 to three subsequent dosing cohorts for IV vilobelimab or placebo receiving either 2 Ă— 2 mg/kg (0 and 12 hr), 2 Ă— 4 mg/kg (0 and 24 hr), and 3 Ă— 4 mg/kg (0, 24, and 72 hr). Co-primary endpoints were pharmacodynamics (assessed by C5a concentrations), pharmacokinetics (assessed by vilobelimab concentrations), and safety of vilobelimab. Preliminary efficacy was evaluated by secondary objectives. RESULTS:. Seventy-two patients were randomized (16 patients for each vilobelimab dosing cohort and eight patients for each placebo dosing cohort). Vilobelimab application was associated with dosing dependent decrease in C5a compared with baseline (p < 0.001). Duration of C5a decrease increased with more frequent dosing. Membrane attack complex lysis capacity measured by 50% hemolytic complement was not affected. Vilobelimab was well tolerated with similar safety findings in all dose cohorts. No vilobelimab-specific adverse events emerged. For vilobelimab-treated patients, investigators attributed less treatment-emergent adverse events as related compared with placebo. Dosing cohorts 2 and 3 had the highest ICU-free and ventilator-free days. There was no difference in mortality, vasopressor-free days, or renal replacement therapy-free days between the groups. CONCLUSIONS AND RELEVANCE:. Administration of vilobelimab in patients with severe sepsis and septic shock selectively neutralizes C5a in a dose-dependent manner without blocking formation of the membrane attack complex and without resulting in detected safety issues. The data warrant further investigation of C5a inhibition in sepsis

    Clinical Frailty Scale (CFS) reliably stratifies octogenarians in German ICUs: a multicentre prospective cohort study

    Get PDF
    Background: In intensive care units (ICU) octogenarians become a routine patients group with aggravated therapeutic and diagnostic decision-making. Due to increased mortality and a reduced quality of life in this high-risk population, medical decision-making a fortiori requires an optimum of risk stratification. Recently, the VIP-1 trial prospectively observed that the clinical frailty scale (CFS) performed well in ICU patients in overall-survival and short-term outcome prediction. However, it is known that healthcare systems differ in the 21 countries contributing to the VIP-1 trial. Hence, our main focus was to investigate whether the CFS is usable for risk stratification in octogenarians admitted to diversified and high tech German ICUs. Methods: This multicentre prospective cohort study analyses very old patients admitted to 20 German ICUs as a sub-analysis of the VIP-1 trial. Three hundred and eight patients of 80 years of age or older admitted consecutively to participating ICUs. CFS, cause of admission, APACHE II, SAPS II and SOFA scores, use of ICU resources and ICU- and 30-day mortality were recorded. Multivariate logistic regression analysis was used to identify factors associated with 30-day mortality. Results: Patients had a median age of 84 [IQR 82–87] years and a mean CFS of 4.75 (± 1.6 standard-deviation) points. More than half of the patients (53.6%) were classified as frail (CFS ≥ 5). ICU-mortality was 17.3% and 30-day mortality was 31.2%. The cause of admission (planned vs. unplanned), (OR 5.74) and the CFS (OR 1.44 per point increase) were independent predictors of 30-day survival. Conclusions: The CFS is an easy determinable valuable tool for prediction of 30-day ICU survival in octogenarians, thus, it may facilitate decision-making for intensive care givers in Germany. Trial registration: The VIP-1 study was retrospectively registered on ClinicalTrials.gov (ID: NCT03134807 ) on May 1, 2017
    • …
    corecore